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ABSTRACT
Introduction Diabetes is a leading contributor to 
cardiovascular disease and mortality; social determinants 
of health (SDOH) are associated with disparities in 
diabetes risk. Quantifying the cumulative impact of SDOH 
and identifying the SDOH most associated with diabetes 
prevalence at the neighbourhood level can help policy- 
makers design and target local interventions to mitigate 
these disparities. Machine learning (ML) methods can 
provide novel insights and help inform public health 
intervention strategies in a place- based manner.
Methods In a cross- sectional study, we used gradient 
boosting ML models to estimate the cumulative contribution 
of a set of SDOH variables to diabetes prevalence (%) at 
the census tract level within New York City (NYC); Shapley 
Additive Explanations were used to assess the magnitude 
and shape of relationships between our SDOH variables and 
model- predicted NYC diabetes prevalence. SDOH measures 
included socioeconomic position, educational attainment, 
food access, air quality, neighbourhood environment, housing 
conditions and insurance coverage.
Results Across 2096 NYC census tracts (population 8 
170 505), mean diabetes prevalence was 11.5% (SD 
3.7%; range 1.9%–42.8%). A set of 16 SDOH variables 
representing a framework of 16 distinct SDOH concepts 
accounted for 67% of the between- tract variance in 
model- derived NYC diabetes prevalence estimates (95% CI 
66% to 68%); a set of 81 variables representing these 
16 concepts accounted for 80% of variance (95% CI 
78% to 81%). Models showed excellent across- location 
generalisation. The most important variables driving model 
predictions within NYC were measures of low educational 
attainment and poverty.
Conclusions SDOH accounted for a substantial proportion 
of neighbourhood- level variation in diabetes prevalence 
within NYC, independent of the demographics and health 
behaviours associated with those SDOH. Our place- based 
findings suggest that, within NYC, where approximately one 
million residents have diabetes and there are legislative 
requirements to reduce the impacts from diabetes, policies 
reducing socioeconomic and educational inequality could 
have the greatest potential to equitably achieve this.

INTRODUCTION
Social determinants of health (SDOH) are 
the non- medical factors that influence health 

outcomes; SDOH encompass the conditions 
in which people are born, grow, work, live and 
age, as well as the wider set of forces and systems 
shaping the conditions of daily life.1 SDOH 
can shape individuals’ health behaviours, 
which can then influence health outcomes.2 
In the USA, SDOH account for up to 50% of 
health outcomes and have been established 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Social determinants of health (SDOH) are associated
with chronic diseases, including diabetes. Although
numerous individual SDOH have been found to be
associated with disproportionate diabetes prev-
alence, there is little evidence regarding local cu-
mulative impact and relative contribution of these
SDOH when considering a constellation of SDOH
simultaneously. Additionally, most prior work does
not consider potential interactions and non- linear
relationships between SDOH and diabetes.

WHAT THIS STUDY ADDS
 ⇒ We demonstrate that non- linear, interactive machine 
learning models show improved accuracy and es-
timate a larger cumulative association between
SDOH and between- neighbourhood disparities in
diabetes prevalence within New York City (NYC) than
did traditional statistical methods. Additionally, our
work demonstrates how policy- makers can harness
machine learning in a place- based way to assist in
designing local initiatives and interventions in a tar-
geted, data- driven way.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ NYC has recently enacted legislation requiring the
Department of Health and Mental Hygiene to imple-
ment initiatives that reduce the impacts of diabetes
and extend life expectancy; our NYC place- based
findings suggest that initiatives focused on reduc-
ing poverty and increasing educational attainment
might have the largest impact in reducing diabetes
prevalence there. Other jurisdictions could adopt
these place- based methods to identify leading SDOH 
to target for public health interventions.
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as drivers of outcome inequities across numerous health 
conditions.3–5 Variation in SDOH across neighbour-
hoods has increased in recent decades as a result of the 
widening distribution of economic prosperity among 
US communities.6 These increasing inequalities have 
expanded interest in developing policies and resources 
that support both ‘places’ and ‘people’, particularly in 
areas disproportionately affected by disadvantaged social 
conditions.7 8 Such policies recognise that socioeconomic 
conditions are significant determinants of health and 
that SDOH- based interventions may improve population 
health.9 10

Cardiovascular disease (CVD) is the leading cause of 
death in the USA and in the world.11 12 The American 
Heart Association considers diabetes to be one of the 
seven major controllable risk factors for CVD,13 and there 
is evidence that numerous dimensions of SDOH are asso-
ciated with diabetes risk.14 Understanding and addressing 
the impact of SDOH has been a research priority due to 
the high and increasing prevalence of this disease.15–17 
Based on four leading theoretical frameworks of SDOH, 
a 2021 systematic review14 found a body of research 
showing strong associations between various SDOH 
and incidence, prevalence, and outcomes of diabetes. 
These include socioeconomic status (eg, education and 
income), neighbourhood and physical environment (eg, 
housing and toxic exposures), food environment (eg, 
food insecurity and food access), healthcare (eg, access 
and quality) and social context (eg, social cohesion and 
social capital). These findings highlight the importance 
of addressing disadvantages in SDOH to improve popula-
tion health, including ameliorating disparities in diabetes 
risk and prevalence.

Nonetheless, the potential to harness SDOH to reduce 
diabetes and CVD remains largely unrealised, as few 
interventions have addressed economic stability, educa-
tion access and quality, or community context and social 
risk.14 18 Additionally, most studies on the relationship 
between SDOH and diabetes have focused on identifying 
the associations between diabetes and a single or a limited 
set of SDOH exposures at a time, without considering the 
multidimensionality of SDOH and the complex interac-
tions among SDOH.14 Further, the association between 
SDOH and health outcomes may differ by geographical 
region19; area- specific evidence is therefore needed to 
target local interventions aimed at mitigating the impact 
of SDOH disadvantages on diabetes risk and outcomes. 
Data- driven approaches that account for these complex 
relationships among multiple SDOH and that can also 
target area- specific needs are therefore needed to iden-
tify those SDOH where policy interventions might have 
the largest and most sustained impact on health equity.

Motivated by three primary reasons, we sought to 
determine the potential combined impact of a compre-
hensive set of SDOH on across- census tract variation in 
diabetes prevalence in New York City (NYC), as well as 
identify the most important SDOH measures that explain 
this variation. First, with a population of over 8 million, 

NYC is the largest city in the USA, where nearly 1 million 
residents have diabetes.20 Targeted interventions there 
could therefore benefit a substantial number of people. 
Second, NYC’s Council recently passed laws requiring the 
Department of Health and Mental Hygiene (DOHMH) 
to implement data- driven citywide initiatives to reduce 
the impacts of diabetes and to extend life expectancy.21–23 
Third, the NYC DOHMH is a stakeholder in the Novartis 
Foundation’s AI4HealthyCities initiative,24 a public–
private partnership that seeks to use advanced analytics 
to decipher drivers of cardiovascular risk and implement 
targeted interventions to reduce CVD. Insights about 
the overall impact of SDOH on diabetes prevalence and 
the strongest SDOH drivers within NYC can be used by 
policy- makers within these initiatives, potentially leading 
to tangible public health benefits.

To address these goals, we used machine learning (ML). 
In contrast to the most commonly used epidemiological 
statistical approaches, ML can model complex, non- linear 
relationships and higher- order interactions between 
SDOH, providing good approximations to the dynamics 
of real- world systems25; given how SDOH interact in real- 
world contexts, ML can provide an excellent estimate of 
their cumulative contribution to diabetes. Additionally, 
ML interpretation algorithms provide insight into what 
drives model predictions while maintaining a model’s 
non- linear, interactive properties26; this can help policy- 
makers understand which SDOH are most associated 
with diabetes prevalence within NYC when considering 
all variables in the model, along with their interactions, 
simultaneously.

METHODS
Data sources and study population
Data for this cross- sectional study were drawn from 
publicly available sources at the census tract level using 
2010 tract boundaries. The outcome measure, tract- 
level diabetes prevalence (%), was obtained from the 
US Centers for Disease Control and Prevention (CDC) 
PLACES project27 2020 data release,28 reflecting data 
from the 2018 CDC Behavioral Risk Factor Surveillance 
System survey (BRFSS).29 In order to ensure within- tract 
sampling adequacy, we subset to tracts with populations 
of at least 500. We further subset the tracts outside NYC 
to only those that were included in the CDC’s 500 Cities 
project’s 2018 data release,30 31 so that non- NYC tracts 
used for model training reflect areas with some urbani-
sation.

Tract- level SDOH predictor variables were compiled 
from a set of publicly available sources: the US Agency 
for Healthcare Research and Quality database,32 the 
CDC Agency for Toxic Substances Disease Registry 2022 
Environmental Justice Index33 and the US Department 
of Agriculture Food Access Research Atlas 2019 release.34 
We follow reporting guidelines for artificial intelligence 
in medical and scholarly research.25 35
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SDOH measures
Diabetes is associated with multiple neighbourhood, 
health system, patient and other characteristics, with 
complex relationships between these factors.14 We 
adapted a conceptual framework developed by Brown 
et al36 to guide our analysis. The framework includes 
both direct and indirect associations between SDOH 
and diabetes through three important pathways (online 
supplemental figure 1). Specifically, SDOH will influ-
ence diabetes through health knowledge and behav-
iours, access to care and behavioural health, and through 
psychological or other medical conditions. These factors 
are considered potential mediators between SDOH and 
diabetes. Demographics (eg, age and sex) are associated 
with diabetes through direct and multiple indirect path-
ways, including SDOH. In this study, we examined total 
associations (including both direct and indirect) between 
SDOH and diabetes; we therefore excluded mediators 
within this framework from our analysis. As our goal 
was to identify SDOH that were potentially modifiable 
through policy intervention, we also excluded demo-
graphic variables.

Guided by the conceptual framework and relevant liter-
ature,14 37–39 we used the following steps to select variables 
for inclusion in our analysis. First, we identified 17 SDOH 
concepts which have been shown to relate to diabetes. We 
required that each concept has a conceptual justification 
and empirical support from previous work, and that it 
is not considered a potential mediator between SDOH 
and diabetes within our adopted framework. Second, we 
mapped SDOH measures from the public data sources 
described above to each of the 17 concepts. As no relevant 
national tract- level crime data were readily publicly avail-
able, we excluded this concept, leaving the remaining 16 
concepts for further analysis (see online supplemental 
table 1). There were 81 SDOH measures, with 1–14 
measures per concept. Finally, to improve the interpret-
ability of the final models, we reduced the set of variables 
to one per SDOH concept through a set of heuristic and 
statistical assessments to identify variables that captured 
large segments of the population, demonstrated substan-
tial variance across census tracts, were exemplary of their 
respective pillar, and showed strong statistical associations 
with diabetes prevalence when considering only census 
tracts outside of NYC (the training data; see the ‘Model 
development and evaluation’ section). Details on this 
process are provided in online supplemental methods. 
The final set of 16 concepts, conceptual justifications, 
variables and variable definitions are provided in online 
supplemental table 1; see online supplemental table 2 for 
the set of candidate variables prior to the final exclusions.

Outcome
The outcome measure was census tract- level diabetes 
prevalence (%), obtained from the CDC PLACES 2020 
data files, described above. This reflects the percentage of 
respondents to the 2018 BRFSS who reported having ever 
been told by a doctor, nurse, or other health professional 

that they have diabetes other than diabetes during preg-
nancy, excluding those who refused to answer, had a 
missing answer or answered ‘don’t know/not sure’.40

Model development and evaluation
We used ML to examine the association between SDOH 
and diabetes prevalence and to identify the SDOH most 
influential in accounting for between- tract variability in 
diabetes prevalence. We followed standard ML practice 
by excluding the data used for model evaluation from 
all stages of variable selection, model design, and model 
training. We therefore split the data into model training 
and test sets based on location, with data from all non- 
NYC tracts, after subsetting as described above, used for 
variable selection and model training, and data from NYC 
tracts after subsetting used for model testing/evaluation. 
Splitting by location mitigates risks of bias where variable 
selection and model parameters may be influenced by 
data biases within NYC itself or by overestimating model 
performance due to spatial autocorrelation. Performance 
metrics are therefore conservative, as they estimate how 
our models generalise to a new location.

We used gradient- boosted regression trees (GBRTs), 
implemented with the XGBoost package.41 GBRTs are 
ensembles of regression trees, where successive trees iter-
atively reduce model errors from the previous trees and 
include both non- linearities and higher- order interac-
tions in the predictor–outcome relationship. As XGBoost 
can handle missing data natively, no imputation was done; 
GBRTs are invariant to data scale and make no distribu-
tional assumptions, so no transformations were done.

Two models were trained, one using the narrow set of 
16 variables and one using the full set of 81 candidate 
variables after initial screening. The goal of the first 
model, which is our primary focus here, was to balance 
model predictive accuracy and interpretability by 
including only one variable per SDOH concept; the goal 
of the second was to assess the broad predictive power of 
SDOH for diabetes prevalence using our SDOH frame-
work and publicly available data. The training objective 
was minimising root mean squared error. See online 
supplemental methods and online supplemental table 
3 for hyperparameter optimisation information. Perfor-
mance was assessed by predicting diabetes prevalence in 
NYC (the test dataset) using the fitted models. Objective 
performance metrics were the proportion of variance 
explained (R2) and mean absolute error (MAE) for 
diabetes prevalence over the test dataset; 95% CIs were 
obtained via bootstrapping (see online supplemental 
methods).

Interpretation of variable importance and the shape 
of the relationship between the predictor variables and 
model predictions used the Shapley Additive Expla-
nations (SHAP) algorithm.42 SHAP provides a unique 
value per predictor variable for each observation (census 
tract), giving the amount that observation’s value for 
that variable pushed the model’s prediction away from 
the dataset mean, while considering all other variables 
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and interactions in the model. SHAP values above 0 indi-
cate that the observation’s value for that input variable 
moved the observation’s prediction above the dataset 
mean; SHAP values below 0 indicate that the variable’s 
value pushed the observation’s prediction below the 
mean. As our outcome measure is diabetes prevalence 
in percentage points, SHAP values are similarly on the 
scale of percentage points of diabetes prevalence. Vari-
ables with larger mean absolute SHAP values contribute 
more to model predictions. Normalised mean absolute 
SHAP values sum to 1 across all variables in the model 
and reflect the proportion of variance each variable 
contributes to model predictions by pushing individual 
predictions away from the mean.

As a comparison baseline for the GBRT models, we 
also fit traditional ordinary least squares (OLS) regres-
sion models both for the 16 variable and 81 variable sets. 
These were fit using the same approach as above by esti-
mating model parameters from the non- NYC dataset and 
predicting values for the NYC dataset. As OLS cannot 
handle missing values, we fit models for each variable set 
using two approaches: by dropping observations with any 
missing values among the predictor variables and by inter-
polating missing values. Interpolation was done using 
the IterativeImputer class from the scikit- learn package 
(V.1.5.0) for Python, with random forest regressors as the 
base estimators. The imputation estimators were fit on 
the non- NYC training data and used to impute values for 
both the non- NYC and NYC datasets. 95% CIs for the R2 
and MAE metrics from the OLS models for each missing 
value approach (dropping or imputing) and each vari-
able set (16 or 81) were computed using the same boot-
strap method as above.

All modelling was carried out in Python (V.3.10.13). 
XGBoost modelling, including SHAP value calculation, 
was carried out using the XGBoost package (V.2.0.3); 
OLS models were fit using the statsmodels package 
(V.0.14.2). Statistical significance was considered at 
p<0.05, two sided.

Patient and public involvement
As a partner in the Novartis Foundation’s AI4Healthy-
Cities initiative, in September 2023, the NYC DOHMH 
provided feedback to the authors of this study suggesting 
diabetes prevalence as the preferred outcome variable. 
This suggestion was made to provide timely, actionable 
information on relevant SDOH and their relationship 
with diabetes to support their ongoing legally mandated 
initiatives to track and reduce the impacts of diabetes.

RESULTS
After subsetting census tracts as described above, there 
were 25 338 non- NYC tracts used for model training (popu-
lation 106 824 787; mean diabetes prevalence, 11.2% (SD 
4.5%; range 1.0–35.7%)) and 2096 NYC tracts used for 
model evaluation and variable importance estimation 
(population 8 170 505; mean diabetes prevalence, 11.5% 

(SD 3.7%; range 1.9%–42.8%)). We focus here primarily 
on results from the narrow 16- variable model. Distribu-
tions for diabetes prevalence and each of the 16 narrow 
variables by quintile of diabetes prevalence for NYC are 
shown in table 1. NYC census tracts with higher diabetes 
prevalence showed SDOH disadvantages compared with 
those with lower prevalence. For example, the mean 
unemployment rate among census tracts in the highest 
diabetes prevalence quintile was over twice that in the 
lowest quintile. Distribution information for all variables 
is shown in online supplemental table 4 and 5 for the 
non- NYC (training) and NYC data, respectively. Density 
plots of the outcome and 16 narrow predictor variables 
for the training and test distributions are depicted in 
online supplemental figure 2 and 3.

When evaluated against the observed data, our narrow 
GBRT model, trained on non- NYC tracts, accounted 
for 67% of the between- tract variance in NYC diabetes 
prevalence (R2=0.67, 95% CI 0.66 to 0.68); the average 
difference between predicted and observed diabetes 
prevalence was ±1.57 percentage points (MAE=1.57, 
95% CI 1.56 to 1.61). The all- variables GBRT model 
showed statistically significant improvements over the 
narrow model (p<0.05; figure 1). We found good corre-
spondence between the observed and GBRT- predicted 
values’ spatial distributions (figure 2).

Our ML- based GBRT models performed better than 
the baseline models fit using traditional OLS regression. 
The narrow 16 variable OLS model with missing values 
dropped accounted for 63% of variance in the data and 
had an average error of ±1.73 percentage points (R2=0.63, 
95% CI 0.63 to 0.64; MAE=1.73, 95% CI 1.72 to 1.75); the 
model with missing values imputed accounted for 63% 
of variance and had an average ±1.74 percentage point 
error (R2=0.63, 95% CI 0.63 to 0.64; MAE=1.74, 95% CI 
1.72 to 1.76). The OLS model using the full 81 variable 
set and with missing values dropped accounted for 64% 
of variance in the NYC data and had an average error 
of ±1.45 percentage points (R2=0.64, 95% CI 0.61 to 0.67; 
MAE=1.45, 95% CI 1.40 to 1.53); the model with missing 
values imputed accounted for 70% of variance with an 
average error of ±1.58 percentage points (R2=0.70, 95% CI 
0.67 to 0.72; MAE=1.58, 95% CI 1.51 to 1.66). Thus, our 
non- linear, interactive ML approach showed lower error 
than traditional linear models in estimating tract- level 
diabetes prevalence in NYC when comparing the respec-
tive 16 and 81 variable models, and they also suggested 
a larger cumulative association between SDOH and 
diabetes prevalence than did traditional linear models.

SHAP variable importance metrics for the narrow 
model (table 2) show that, of the 16 predictor variables, 
the most influential were low educational attainment, 
enrolment in the supplemental nutritional assistance 
programme (SNAP), household broadband and propor-
tion of older adults living alone. These four variables each 
contributed at least 10% and combined accounted for 
62% of the variation in model predictions; the remaining 
12 narrow variables each contributed less than 6% to 
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prediction variation. The top three variables (education, 
SNAP and broadband) were all strongly intercorrelated 
(Spearman |ρ|>0.75 in the training set), suggesting they 
reflect a shared underlying construct of socioeconomic 
deprivation. See online supplemental table 6 for SHAP 
values from the all- variables model.

Scatterplots showing the relationship between SHAP 
values and the top eight most influential variables from 
the narrow model (figure 3) show that predictions of 
increased diabetes prevalence were associated with 
higher rates of poor educational attainment, enrolment 
in SNAP, proportion of older adults living alone, single 
parent families and housing units without complete 
kitchen facilities. Lower rates of household broadband, 
shorter commute times and less walkable neighbour-
hoods were also associated with higher model- predicted 

diabetes prevalence. Additionally, some of these rela-
tionships showed clear non- linearities, for example, the 
increase in predicted diabetes prevalence for rates of 
high school education or less flattened above approxi-
mately 50%, the increase showed an inflexion at around 
20% rates of SNAP participation and the decrease asso-
ciated with higher household broadband rates flattened 
above approximately 75%.

DISCUSSION
Using ML, we found that a small set of SDOH measures 
can account for a substantial proportion of variation in 
across- census tract diabetes prevalence within NYC, even 
when model fitting was blind to NYC data. Our results 
add to the literature by quantifying the total predictive 

Figure 1 Observed and model- predicted diabetes prevalence within New York City (NYC). Results for both narrow model 
with 16 SDOH predictors (left) and all- variables model with 81 SDOH predictors (right). Each point represents one NYC census 
tract. Solid lines show least squares regression fits for predicted- observed relationships; grey bands reflect 95% CIs. Dashed 
lines show optimal hypothetical fit where predicted and observed values are equal. MAE, mean absolute error; SDOH, social 
determinants of health.

Figure 2 Maps of observed and predicted diabetes prevalence within New York City by census tract. Observed prevalence 
(left), predicted prevalence from narrow model with 16 SDOH predictors (centre) and predicted prevalence from all- variables 
model with 81 SDOH predictors (right). SDOH, social determinants of health.
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power that a comprehensive set of SDOH variables might 
have on diabetes prevalence in NYC, where reducing 
diabetes rates and impact is a legally mandated priority; 
we did so by using a flexible, interactive ML approach 
that can better model the complex associations among 
SDOH than traditional epidemiological models. As such, 
our ML models were more accurate than traditional 
linear models, and they suggested a larger cumulative 
association between SDOH and diabetes prevalence in 
NYC than did standard linear statistical methods.

Additionally, our approach identified the most 
important SDOH driving model estimates of diabetes 
prevalence within NYC. Although all of our SDOH 
concepts have shown associations with diabetes in prior 
work, rates of low educational attainment, high participa-
tion in SNAP and low household broadband connectivity 
were most strongly related to model predictions of higher 
diabetes prevalence in NYC. As these three variables were 
highly intercorrelated, a general factor of socioeconomic 
deprivation is likely a primary predictor of disparities in 
diabetes prevalence, over and above the other individual 
SDOH measures in our models. Moreover, as we assessed 
model performance using data unseen during training, 
where training data was drawn from geographical areas 
outside of NYC, our performance estimates do not reflect 
overfitting to the training data or bias from spatial auto-
correlation within NYC. As such, their robustness under-
scores the pervasive and systematic influence of SDOH 
on chronic illnesses like diabetes.

Our findings support the well- documented association 
between SDOH and chronic illnesses like diabetes14 38; 

they also provide a quantifiable assessment of their cumu-
lative influence at a neighbourhood level within NYC. 
Place- based methods and models like ours can be used 
by policy- makers to identify modifiable SDOH that 
might have the largest impact on improving local public 
health. For example, interventions targeting wealth and 
education inequalities, the two SDOH suggested by our 
models as showing the strongest association with diabetes 
prevalence in NYC, have been shown to have long- term 
positive consequences on health behaviours and health 
outcomes for some conditions.10 However, as of yet, 
there is little concrete evidence identifying the potential 
impacts of such interventions on diabetes,14 suggesting 
that reducing diabetes disparities could be an important 
target for future studies of policy change. Nonetheless, 
these findings should be contextualised within a prioriti-
sation framework. While a recent study found that wealth 
redistribution would be the quickest way to narrow 
longevity disparities between the USA and other devel-
oped nations,43 this approach is unlikely to be successful 
in a capitalistic democracy like the USA.44 However, there 
is increasing evidence that improving local economic 
conditions improves health outcomes.45 46

Our study has several limitations. First, observed vari-
ables may represent latent constructs; an individual 
variable’s correlation with model predictions may, 
therefore, be driven by a latent factor and not the vari-
able as defined in the data source or the SDOH liter-
ature. For example, some have proposed broadband 
access as a unique SDOH pillar, promoting health 
through access to information and telehealth, as well 

Table 2 SHAP values for New York City (test dataset) from narrow 16 variable model

Variable
Raw mean absolute 
SHAP value

Normalised mean 
absolute SHAP value

Cumulative normalised mean 
absolute SHAP value

% high school education or less 1.20 0.21 0.21

% SNAP benefits 1.06 0.19 0.40

% households w/ broadband 0.68 0.12 0.52

% over 65 living alone 0.60 0.10 0.62

% commute <15 min 0.31 0.06 0.68

EPA National walkability index 0.26 0.05 0.72

% single parent families 0.20 0.04 0.76

% housing w/o complete kitchen 0.19 0.03 0.79

% uninsured 0.18 0.03 0.82

% limited English 0.18 0.03 0.85

% essential labour force 0.18 0.03 0.89

% unemployment 0.18 0.03 0.92

% rent >30% household income 0.14 0.02 0.94

Gini index 0.14 0.02 0.97

Low food access @ half mile 0.14 0.02 0.99

Mean days >EPA PM2.5 standard 0.06 0.01 1.00

EPA, Environmental Protection Agency; PM2.5, particulate matter ≤2.5 µm; SHAP, Shapley Additive Explanations; SNAP, Supplemental 
Nutrition Assistance Programme.
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as by modulating other SDOH.47–50 Although we found 
low household broadband rates to correlate with 
higher predicted diabetes prevalence, lack of broad-
band is generally associated with poverty51 and was 
highly correlated with low educational attainment and 
participation in SNAP in our own data. It is therefore 
likely that lack of household broadband may simply be 

a flag for general socioeconomic deprivation, particu-
larly given that broadband is nearly ubiquitously avail-
able in all areas of NYC.52 Second, SHAP values and the 
relationships seen in the scatterplots (figure 3) cannot 
be interpreted identically to partial effects in regres-
sion models. XGBoost models include higher- order 
interactions, so that SHAP values for a given variable 

Figure 3 Scatterplots for relationship between SDOH predictors and Shapley Additive Explanations (SHAP) values for New 
York City (NYC). Top- eight most influential variables are shown. Each point represents one NYC census tract. SHAP values 
above 0 reflect predictions of diabetes prevalence higher than the mean in percentage points; SHAP values below 0 reflect 
predictions of diabetes prevalence below the mean in percentage points. SDOH, social determinants of health.
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consider all interactions with other variables in the 
fitted models. Also, the XGBoost algorithm randomly 
samples variables between trees, leading to shared 
predictive power among correlated variables. As such, 
mean absolute SHAP values and their relative rankings 
should be interpreted as approximate guides for which 
variables contribute most to model predictions and not 
as exact causal contributions.

Third, the relative feature importance hierarchy seen 
in our test SHAP values applies to NYC and may not 
be the same in other areas. For example, our measure 
of poor air quality had low observed variance in NYC 
compared with the training data (online supplemental 
figure 3); low variance in the test set could lead to low 
relative feature importance for NYC. Training or infer-
encing models in different geographies or with other vari-
able sets could lead to different relative importance. This 
highlights the importance of our place- based approach 
in providing local insights. Fourth, our work shares 
limitations common to all observational research using 
publicly available survey data. For example, diabetes prev-
alence was self- reported and not confirmed with medical 
records, and it does not consider controlled vs uncon-
trolled diabetes. Additionally, there is the possibility for 
measurement error, data quality is limited by methods 
and sampling adequacy concerns tied to BRFSS and 
other similar data, and survey questions are predefined 
and outcomes must be interpreted in light of how ques-
tions are posed. Fifth, as the level of measurement in our 
dataset is the census tract, our results might not gener-
alise to individuals. Sixth, our study uses prevalence data 
rather than incidence data; this has implications for inter-
preting the relationship between SDOH measures and 
diabetes. For example, our cross- sectional prevalence 
data obscures the temporal sequence of events, making it 
challenging to identify whether specific SDOH drive new 
cases (incidence) or are associated with existing cases; 
the relationship between some SDOH variables and new 
case rates may therefore be different from that reported 
here. Finally, as our research was observational, our find-
ings, including SHAP importances, are associative and 
not causal.

Despite these limitations, our interpretable ML 
findings highlight the substantial impact that SDOH, 
independent of their associated demographics and 
health behaviours, can have on chronic disease, such 
as diabetes. Timely, accurate and high- quality data are 
a critical component of public health decision- making, 
and we have shown that ML can support this. These 
place- based insights can be of practical use, for instance, 
helping to guide the targeted development of a diabetes 
incidence reduction plan, as required by NYC law,21 
and similar methods can be adopted by other jurisdic-
tions to guide their own targeted efforts. However, any 
interventions that arise from this or similar work should 
target latent factors giving rise to the most impactful 
SDOH variables identified by our models. As low socio-
economic status and low educational attainment were 

the most influential variables in our models, we hypoth-
esise that interventions targeting these underlying 
general determinants may have more long- term impact 
than interventions focused narrowly and exclusively on 
one particular indicator of them.
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